GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation.
نویسندگان
چکیده
The Rho family of small GTPases controls a wide range of cellular processes in eukaryotic cells, such as normal cell growth, proliferation, differentiation, gene regulation, actin cytoskeletal organization, cell fate determination, and neurite outgrowth. The activation of Rho-GTPases requires the exchange of GDP for GTP, a process catalyzed by the Dbl family of guanine nucleotide exchange factors. We demonstrate that a newly identified guanine nucleotide exchange factor, GEFT, is widely expressed in the brain and highly concentrated in the hippocampus, and the Purkinje and granular cells of the cerebellum. Exogenous expression of GEFT promotes dendrite outgrowth in hippocampal neurons, resulting in spines with larger size as compared with control spines. In neuroblastoma cells, GEFT promotes the active GTP-bound state of Rac1, Cdc42, and RhoA and increases neurite outgrowth primarily via Rac1. Furthermore, we demonstrated that PAK1 and PAK5, both downstream effectors of Rac1/Cdc42, are necessary for GEFT-induced neurite outgrowth. AP-1 and NF-kappaB, two transcriptional factors involved in neurite outgrowth and survival, were up-regulated in GEFT-expressing cells. Together, our data suggest that GEFT enhances dendritic spine formation and neurite outgrowth in primary neurons and neuroblastoma cells, respectively, through the activation of Rac/Cdc42-PAK signaling pathways.
منابع مشابه
Tiam1 as a Signaling Mediator of Nerve Growth Factor-Dependent Neurite Outgrowth
Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elon...
متن کاملPDZ-RhoGEF ubiquitination by Cullin3–KLHL20 controls neurotrophin-induced neurite outgrowth
The induction of neurite outgrowth and arborization is critical for developmental and regenerative processes. In this paper, we report that the BTB-kelch protein KLHL20 promoted neurite outgrowth and arborization in hippocampal and cortical neurons through its interaction with Cullin3 to form a ubiquitin ligase complex. This complex targeted PDZ-Rho guanine nucleotide exchange factor (RhoGEF), ...
متن کاملThe guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate ac...
متن کاملDynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension
Neurite extension is regulated by multiple signaling cascades that ultimately converge on the actin and microtubule networks [1]. Rho GTPases, molecular switches that oscillate between an inactive, GDP-bound state and an active, GTP-bound state, play a pivotal role in controlling actin cytoskeleton dynamics in the growth cone, whereas the dynamic behavior and interactions of microtubules are la...
متن کاملThe Guanine Nucleotide Exchange Factor Tiam1 Affects Neuronal Morphology; Opposing Roles for the Small GTPases Rac and Rho
The invasion-inducing T-lymphoma invasion and metastasis 1 (Tiam1) protein functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. Differentiation-dependent expression of Tiam1 in the developing brain suggests a role for this GEF and its effector Rac1 in the control of neuronal morphology. Here we show that overexpression of Tiam1 induces cell spreading and affects ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 44 شماره
صفحات -
تاریخ انتشار 2004